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The role of LiDAR in sustainable forest management
by Michael A. Wulder1,2, Christopher W. Bater3, Nicholas C. Coops3, Thomas Hilker3 and Joanne C. White1

ABSTRACT
Forest characterization with light detection and ranging (LiDAR) data has recently garnered much scientific and opera-
tional attention. The number of forest inventory attributes that may be directly measured with LiDAR is limited; however,
when considered within the context of all the measured and derived attributes required to complete a forest inventory,
LiDAR can be a valuable tool in the inventory process. In this paper, we present the status of LiDAR remote sensing of
forests, including issues related to instrumentation, data collection, data processing, costs, and attribute estimation. The
information needs of sustainable forest management provide the context within which we consider future opportunities
for LiDAR and automated data processing. 

Key words: LiDAR, airborne laser altimetry, forest inventory, height, volume, biomass, update, remote sensing

RÉSUMÉ
La représentation des forêts à partir de données LiDAR (détection de la lumière et calcul de la distance) a attiré dernière-
ment beaucoup d’attention tant scientifique qu’opérationnelle. Le nombre de variables d’inventaire forestier qui peuvent
être mesurées directement par LiDAR est limité, mais lorsqu’on considère le contexte de toutes les variables mesurées et
dérivées requises pour compléter un inventaire forestier, le LiDAR peut constituer un outil précieux du processus d’inven-
taire. Nous présentons dans cet article un portrait de la télédétection des forêts par LiDAR, ainsi que les questions portant
sur l’appareillage, la collecte des données, les coûts et l’estimation des variables. Les besoins d’information en matière
d’aménagement forestier durable constituent le contexte que nous retenons pour les possibilités d’application future du
LiDAR et du traitement automatisé des données. 
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Introduction
Forest inventories are designed to measure the extent, quan-
tity, composition, and condition of forest resources (Kangas et
al. 2006). In support of sustainable forest management, up-to-
date forest inventories are required to assess the composition,
structure, and distribution of forest vegetation that, in turn,
can be used as base information for management decisions
that span across a range of spatial and temporal scales. At the
operational level, forest inventories are used for harvest plan-
ning, road layout, assessment of growing stock, and planning
of silvicultural activities. At the strategic level, forest invento-
ries provide data for long-term forest management plans and,
in concert, support a multitude of decisions relevant to forest
protection and wildlife management. In Canada, the produc-
tion of a forest inventory follows a series of stages, culminating
in the development of a digital spatial database that is stored,
maintained, and manipulated in a Geographic Information
System (GIS) (Leckie and Gillis 1995, Gillis 2001).

Extensive sustainable forest management practices prevail
in Canada where there are over 400 million ha of forest and
other wood land that are largely publicly owned and managed
for multiple purposes (Siry et al. 2005, Wulder et al. 2007a). As
a result, low-cost monitoring approaches are typically followed,
such as those based upon air photo acquisition and interpreta-
tion, and augmented with a sparse network of field plot meas-
urements (Gillis et al. 2005). In contrast, intensive forest man-

agement practices are more common in nations with a small
landbase and less forest land, and where forests are primarily
privately owned and managed for wood fibre production (Löf-
man and Kouki 2003, Mielikäinen and Hynynen 2003). As a
consequence, while we examine light detection and ranging
(LiDAR) applications from around the globe in this paper, our
objective is to focus upon the implications of these applications
in the extensive sustainable forest management context prevail-
ing in Canada.

Air photo interpretation for forest inventory involves
delineating the forest landbase into relatively homogenous
units based on characteristics such as species, composition,
age, disturbance, and stand structure (Leckie and Gillis 1995).
These homogenous units are typically referred to as forest
inventory polygons or forest stands. Stand height and crown
closure are common descriptors of forest stands from which a
number of other important forest attributes can be derived
such as site index and stand volume. Forest inventories typi-
cally report a representative estimate of height for an entire
forest stand that is often defined as the average height of dom-
inant and co-dominant trees (Gillis and Leckie 1993).

To date, research and development activities have focused
upon using LiDAR as a tool for characterizing vertical forest
structure—primarily the estimation of tree and stand heights,
with volume and biomass also of interest (Lim et al. 2003).
With increasing availability of LiDAR data, forest managers
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have seen opportunities for using LiDAR to meet a wider
range of forest inventory information needs (Nelson et al.
2003). For instance, height estimates generated from airborne
remotely sensed LiDAR data were found to be of similar, or
better accuracy than corresponding field-based estimates
(Næsset and Økland 2002) and studies have demonstrated
that the LiDAR measurement error for individual tree height
(of a given species) is less than 1.0 m (Persson et al. 2002) and
less than 0.5 m for plot-based estimates of maximum and
mean canopy height with full canopy closure (Næsset 1997,
Magnussen and Boudewyn 1998, Magnussen et al. 1999,
Næsset 2002, Næsset and Økland 2002). Additional attrib-
utes, such as volume (Nilsson 1996), biomass (Popescu et al.
2003, 2004; Hyde et al. 2007), and crown closure (Holmgren
et al. 2003), are also well characterized with LiDAR data
(Means et al. 2000, Lim et al. 2003, Thomas et al. 2006). This
paper presents a brief background into LiDAR data acquisi-
tion followed by the application of LiDAR for estimation of
forest attributes. This application focus will be placed within
the context of information needs to support sustainable forest
management and the considerations necessary for opera-
tional use of LiDAR technologies in forestry.

LiDAR background
Table 1 provides a glossary of commonly used LiDAR terms
that may be unfamiliar to some readers. LiDAR sensors
directly measure the 3-dimensional distribution of vegeta-
tion canopy components as well as sub-canopy topography,
resulting in an accurate estimate of both vegetation height
and ground elevation. As illustrated in Fig. 1, LiDAR systems
can be classified into either discrete return or full waveform
sampling systems, and may be further characterized by
whether they are profiling systems (i.e., recording only along
a narrow transect), or scanning systems (i.e., recording
across a wider swath) (Lefsky et al. 2002). Full waveform
sampling LiDAR systems generally have a more coarse spa-
tial resolution (i.e., a large footprint: 10 m to 100 m) com-
bined with a fine and fully digitized vertical spatial resolu-
tion, resulting in full sub-meter vertical profiles. Full
waveform LiDAR are generally profiling systems and are
most commonly used for research purposes (for background
see Lefsky et al. (2001) and Harding et al. (2001). Although
there are currently no systems that provide large-footprint
full waveform LiDAR data commercially, the Geoscience
Laser Altimeter System (GLAS) onboard the Ice, Cloud and
land Elevation Satellite (ICESat) is a large-footprint full
waveform LiDAR system that may be used for forest charac-
terization (Zwally et al. 2002) and for the development of
generalized products for modeling. For example, Lefsky et al.
(2005) used data from GLAS to derive forest canopy height
and aboveground biomass. More recently, Sun et al. (2008)
evaluated GLAS data for determining forest vertical struc-
ture. Small-footprint full waveform systems are just becom-
ing commercially available; however, given the limited use of
full waveform LiDAR systems in an operational forestry con-
text at present, the remainder of this paper will focus solely
on small-footprint discrete return LiDAR systems for forest
attribute estimation.

Discrete return LiDAR systems (with a small footprint size
of 0.1 m to 2 m) typically record only 1 to 5 returns per laser
footprint (Lim et al. 2003) and are optimized for the deriva-
tion of sub-meter accuracy terrain surface heights (Blair et al.
1999, Schenk et al. 2001). These systems are used commer-

cially for a wide range of applications including topographic
mapping, power line right-of-way surveys, engineering, and
natural resource characterization (Lefsky et al. 2002).

Discrete return scanning LiDAR yields a cloud of points,
with the lower points representing the ground and the upper
points representing the canopy. One of the first steps under-
taken when processing LiDAR data involves the separation of
ground versus non-ground (i.e., canopy) hits—a function that
is often undertaken by LiDAR data providers using software
such as TerraScan, LP360, or the data provider’s own propri-
etary software. Typically, this processing employs iterative
algorithms that combine filtering and thresholding methods
(Kraus and Pfeifer 1998, Axelsson 1999). Analysis can com-
mence once all LiDAR points have been classified into
ground or non-ground returns. Ground hits are typically
gridded to produce a bare-earth Digital Elevation Model
(DEM) using standard software approaches such as triangu-
lated irregular networks, nearest neighbour interpolation, or
spline methods. As the point spacing of the LiDAR observa-
tions is significantly finer than the spatial detail typically
observable on aerial photography, the DEMs generated from
LiDAR often contain significantly more horizontal and verti-
cal resolution than elevation models generated from moder-
ate-scale aerial photography (Anderson et al. 2006).

Fig. 2 shows an example of a DEM derived from 1:25 000
aerial photographs (as part of the provincial Terrain Resource
Inventory Mapping (TRIM) program in British Columbia)
and a DEM of the same area generated from LiDAR ground
return data gridded to 1-m spatial resolution. Clear differ-
ences are evident in the enhanced capacity of the LiDAR to
detect fine-scale topographic variations, especially small
drainage links and riparian features, as well as topographic
features associated with abrupt changes in relief. Once the
DEM is created, estimates of vegetation height are derived by
subtracting non-ground hits from the terrain surface repre-
sented by the DEM to generate a canopy height model
(CHM) (Lim et al. 2003, Leckie et al. 2003).

Airborne LiDAR surveys using discrete return LiDAR sys-
tems are often designed to have a dense and evenly distrib-
uted point spacing. However, in canopies with a greater
amount of leaf area, the gap fraction (i.e., the fraction of open
sky not obstructed by canopy elements [Jonckheere et al.
2005]) is reduced, resulting in datasets containing a large
number of vegetation returns and a relative paucity of terrain
information. This lack of ground returns has implications for
the quality of derived DEMs and subsequent representation
of terrain morphology, as well as for the accurate estimation
of canopy height and other vegetation metrics. Previous
research has shown that the accuracy of a DEM varies with
changes in terrain and land cover type (e.g., Hodgson and
Bresnahan 2004, Su and Bork 2006). The selection of an
appropriate algorithm for DEM interpolation can be an
important decision, especially in uneven terrain or over dif-
fering stand densities. Limitations to the development of an
accurate and consistent DEM directly affect the LiDAR-based
attribute estimates (Leckie et al. 2003). Liu (2008) provides a
comprehensive review of the considerations associated with
the use of LiDAR data for DEM generation. 

LiDAR technical characteristics
In contrast to passive sensors that measure the sun’s reflected
energy (i.e., Landsat, QuickBird), LiDAR are active sensors
that emit near-infrared energy at high pulse frequencies.
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Table 1. Glossary of terms common to LiDAR acquisition, processing, and applications. Definitions are based largely on informa-
tion found in Baltsavias (1999), Maune (2001), Lefsky et al. (2002) and Lim et al. (2003).

Term Definition

apparent foliage profile (AFP) The vertical foliage profile obtained from an active airborne sensor. May be biased towards the upper
canopy as the sensor is looking from the top down.

beam divergence (beamwidth) A measure of how quickly a laser beam expands along its path. Expressed in milliradians (mrad).

canopy height model (CHM) A continuous digital dataset representing vegetation heights.

differentially corrected global A GPS system employing one or more reference receivers which collect data as a LiDAR survey is
positioning system (dGPS) flown. Observations collected by the reference receivers are then used to correct the observations made

by the LiDAR’s GPS onboard the aircraft. 

digital elevation model (DEM) A continuous digital dataset representing terrain heights. Created by applying an interpolation routine
to ground returns.  Also commonly referred to as a digital terrain model (DTM). 

discrete return A LiDAR system that records reflected pulses as discrete points in 3-dimensional space. State-of-the-art
sensors may record multiple returns for each emitted pulse.

filtering Classification of LiDAR returns with reference to the surfaces from which they were reflected, such as
ground, non-ground, vegetation, building, and so on. Though automated to some degree, a significant
amount of operator intervention is often required. 

footprint The diameter of a laser pulse’s circle of illumination on the ground. LiDAR sensors may be small foot-
print (typically 0.1-2 m) or large footprint (typically 10-100 m).

ground returns Laser pulse returns that have been classified as having been reflected by the ground.

inertial navigation system A component of a LiDAR system that records the pitch, roll and yaw of the aircraft to correct the 
(INS) orientation of the sensor at the time of pulse emission.

intensity The ratio of received to transmitted energy for a laser pulse return. 

interpolation The estimation of values at unsampled locations within the range of a set of measured points. Natural
neighbour, splining, and kriging are commonly used algorithms employed to generate continuous digi-
tal elevation and canopy height models from LiDAR returns.  

light detection and ranging An active remote sensing system employing a laser to measure distance to a target. Currently, the
(LiDAR) majority employed operationally are airborne, discrete return, small footprint systems. Also referred to

as laser altimetry. 

non-ground returns Laser pulse returns that have been classified as having intercepted surfaces above the ground, such as
vegetation or buildings. 

point cloud Raw LiDAR returns projected using a three dimensional coordinate system. When viewed with visuali-
zation software, the returns, particularly in vegetated areas, resemble a cloud.

posting distance The average horizontal distance between LiDAR returns. 

pulse A laser pulse generated and emitted from the LiDAR sensor.

pulse duration or width Duration of a laser pulse, usually defined as the time elapsed between the 50% power peaks on the
leading and trailing edges of a pulse. Expressed in nanoseconds (ns).

pulse energy Energy output per laser pulse. Expressed in microjoules (µJ).

pulse repetition rate The rate at which a sensor emits individual laser pulses each second. Expressed in kilohertz (kHz). 

return A pulse that is reflected off a target and returned to a detector on the LiDAR sensor and recorded. 

scan angle or field of view (FOV) The angular breadth of a scan line, determined by a sensor’s scanning mechanism. Expressed in
degrees (deg).

scan rate The rate at which laser pulses are directed across the flight line each second. Typically expressed in
hertz (Hz).

swath width The strip of terrain below a sensor which is sampled by a scan line. Expressed in metres.

triangulated irregular A vector-based representation of a continuous surface such as terrain. Typically based on Delaunay
network (TIN) triangulation, which joins points with x, y and z coordinates using non-overlapping triangles.

waveform recording A LiDAR system with the capacity to continuously measure reflected radiation through a vertical pro-
file.  May be referred to as “full waveform data.”

wavelength The distance between successive peaks of an electromagnetic wave. Near-infrared lasers are typically
employed for terrestrial mapping applications. Expressed in micrometres or nanometres (µm).  
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Depending on the nature of the surface, a portion of the
reflected pulse may be returned to the instrument where, if
the pulse’s magnitude exceeds a predefined threshold, the
time elapsed between emittance and reflectance is recorded
(Goodwin et al. 2006). Based on our knowledge of the speed
at which light travels, the time required for the emitted pulse
to return to the sensor is converted to a distance. Although
each pulse is emitted from the sensor as a single unit, it may
return to the sensor in multiple parts, known as returns. Dis-
crete return LiDAR systems have the capacity to receive and
record different numbers of returns, while full waveform sys-
tems have the capacity to receive and record all returns. For
example, imagine that a discrete return LiDAR sensor emits a
laser pulse over a forested area. The first surface the pulse

intercepts is the forest canopy and a portion of the pulse’s
energy is reflected back to the sensor. The remaining pulse
continues to travel through the canopy (depending on canopy
structure and the strength of the pulse) and may eventually
intercept the ground. As the pulse intercepts these other sur-
faces, a portion of the pulse’s energy is returned to the sensor.
The time it takes for each of these returns to travel back to the
sensor is recorded and converted to a distance. Then another
pulse is emitted and the process of measuring the returns is
repeated. In its simplest form, LiDAR data processing will
often involve identifying the first return as vegetation canopy,
and the last return as bare ground.

Airborne LiDAR systems will include an onboard differ-
entially corrected Global Positioning System (dGPS) that
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Fig. 1. LiDAR systems can be classified as either (A) discrete return or (B) full waveform sampling systems. Furthermore, some LiDAR
systems are profiling systems (C), meaning they collect data along a narrow swath, or are scanning systems (D), meaning the laser
moves from side to side as the platform (e.g., airplane) moves forward, and records across a wider swath.
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records the aircraft’s location. The aircraft’s orientation is
obtained from an Inertial Navigation Systems (INS) (Wehr
and Lohr 1999). This information allows for the precise com-
putation of height and location of the surface from which a
pulse is reflected (Gaveau and Hill 2003) with accuracies of
approximately 15 and 40 cm, respectively (Davenport et al.
2004). Early LiDAR systems typically recorded only a single
pulse returning from the ground or vegetative surface, requir-
ing multiple overpasses to capture both bare ground and
canopy conditions. More recently, systems have been devel-
oped that record first and last returns of a single pulse, with
current state-of-the-art systems able to record greater than 5
returns per pulse. While beyond the scope of this paper,
small-footprint, full waveform systems have also been devel-
oped in the past 2 years, offering even finer-scale vertical dis-
crimination (Wagner et al. 2006).

Forest Attribute Estimation and Approaches
The estimation of vertical forest structure such as canopy
height from LiDAR data is arguably of greatest interest to
foresters (Lim et al. 2003). From this information, other bio-
physical parameters (e.g., volume, above-ground biomass) are
derived that describe the function and productivity of forest
ecosystems (Dubayah and Drake 2000). The approaches for
extracting forest attributes from small-footprint discrete
return LiDAR data can generally be separated into individual
tree-based and plot-based assessment (Reutebuch et al. 2005).

Individual tree-based assessment
When small-footprint LiDAR data are acquired at very high
densities, approaching (4 to 5 returns per m2) individual tree
crowns can readily be observed in the point clouds, often with
the apex and boundary of the crown discernable by visually
examining the data (Andersen et al. 2006). Computer-based
algorithms have therefore successfully been applied to auto-
matically identify tree crown structures and extract individual
tree attributes, including total height, crown height, and
crown diameter (Ziegler et al. 2000; Persson et al. 2002;
Schardt et al. 2002; Næsset et al. 2004, 2005; Popescu and
Wynne 2004; Bortolot and Wynne 2005; Falkowski et al.
2006; Næsset and Nelson 2007). Fig. 3 shows data obtained
from a LiDAR survey collected at 1-m spacing. Fig. 3(A)
shows the entire area and Fig. 3(B) highlights a small subset
of the area, illustrating that even at 1-m posting, large tree
crowns are easily discernable from other non-ground returns
(e.g., returns with height >1 m). At spacings of 20 cm to 30
cm, more individual tree detail will be apparent (Popescu
2007, Popescu and Zhao 2008).

The extraction of individual tree dimensions from LiDAR
observations collected with lower postings raises a number of
issues that need to be considered. Popescu et al. (2003)
showed that although individual tree heights can be estimated
using lower-density LiDAR data (i.e., >1 point per m) it is dif-
ficult to accurately measure other crown attributes, such as
crown width, especially in mixed deciduous forest types
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Fig. 2. Digital elevation models (DEMs) derived from 1:25 000 aerial photography (A) and LiDAR data (B). The DEMs have a spatial res-
olution of 20 m (A) and 1 m (B), respectively.
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(Reutebuch et al., 2005). Similarly Næsset and Økland (2002)
found an average point spacing of 1 m was insufficient to
accurately estimate individual crown attributes (height to
green canopy and crown length) in a Norway spruce (Picea
abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) forest,
whilst Takahashi et al. (2005) required data as dense as 8.8
LiDAR returns per m2 to successfully estimate tree heights to
within 1 m of field estimates in sugi (Cryptomeria japonica D.
Don) plantation forests.

Plot-based assessment
A second common approach to extracting forestry attributes
from small-footprint LiDAR data involves accumulating all
LiDAR hits within a given area and then through empirical
(i.e., statistical) relations, comparing the statistical properties
of these grouped LiDAR pulses to a range of plot-level
forestry attributes such as height, basal area, stem volume,
above-ground biomass, and stem density (McCombs et al.
2003, Popescu et al. 2004, Reutebuch et al. 2005, van Aardt et
al. 2006, Coops et al. 2007). The reason these relationships
have proven to be so stable across so many forest types and
structures is because these grouped LiDAR responses essen-
tially represent a detailed measurement of all surfaces within
a canopy volume (foliage, branches, and stems). So even when
LiDAR data are collected at a lower hit density (i.e., 1-m to 
2-m spacing between LiDAR hits), or when the vertical struc-
ture of the forest is complex (i.e., composed of multiple

canopy strata, with a significant understorey component)
meaningful relationships to plot-level forest attributes may
still be generated. It must be noted that similar to empirical
relationships developed from remotely sensed optical data,
the relationships generated from LiDAR data will often be
specific to the project area and the data collection parameters
used. For instance, data thinning to reduce perceived redun-
dancies or to facilitate the development of an elevation layer
would alter the vertical point density and possibly impact
empirical relationships with forest attributes. As a result,
empirical relationships will need to be generated for each
project independently. A number of approaches have been
developed relating metrics based on LiDAR hits with plot-
level forest inventory data including maximum, mean, or
Lorey’s mean height (defined as product of tree height and its
basal area), cover estimates, height percentiles, curve fitting,
canopy volume and variance measures and some of these are
addressed in the following sections (Hall et al. 2005).

Mean, maximum, and Lorey’s height
Research has shown that stand heights in moderate to dense
canopy forests are commonly underestimated with LiDAR
data as the probability of a laser pulse intercepting the apex of
a tree crown is relatively small (Nilsson 1996, Næsset 1997).
As a result, canopy heights are often biased toward lower val-
ues (Popescu et al. 2002). A number of approaches have been
developed to reduce this bias, including: selecting a base
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Fig. 3. Data obtained from a LiDAR survey collected at 1-m spacing. Maximum vegetation heights are shown across the entire study
area (A), while in (B) a small subset of the study area is shown and illustrates that even at 1-m spacing, large tree crowns are easily
discernable from non-ground returns (>1 m  in height). 
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height threshold under which all points are removed (such as
5 m) and then computing the average of the remaining points
using the maximum, rather than the mean, LiDAR height
within a stand; or stratifying the plot into a number of smaller
grid cells, and then extracting the heights within each grid cell
(e.g., Næsset 1997, Hilker et al. 2008). These heights from the
grid cells are then averaged to obtain a stratified dominant
height estimate. Næsset (1997) and Lovell et al. (2003) both
applied this method by dividing the LiDAR plots into 4 sub-
plots, with the highest return in each sub-plot averaged to
obtain a dominant height estimate for the plot. The expected
difference between mean tree height and the laser-based mean
canopy height is discussed in detail in Magnussen and
Boudewyn (1998). In their work, geometrical probabilities
were used to estimate the average vertical positions of laser hits
given an average crown size. This position was then compared
to the actual tree height for stands in the study area and a mean
tree height was computed by adding the calculated difference
to the laser estimated tree height. Adding the estimated differ-
ence to the laser-based height improved the correlation
between field and laser estimates from 0.61 to 0.83.

Height percentiles
Rather than simply utilizing the maximum or mean height
estimates, an alternative method of estimating stand height
involves characterizing the distribution of all hits within a
pre-defined window of LiDAR data and calculating key met-
rics along the cumulative distribution. These height estimates,
called height percentiles, are most often calculated at 5% or
10% intervals, with other forestry attributes then correlated to
one or more of these percentiles. Næsset et al. (2004) devel-
oped a suite of equations relating a number of plot-level 
forest inventory attributes such as mean height, dominant
height, mean diameter, stem number, basal area, and volume,
to LiDAR-derived percentiles and found statistically signifi-
cant relationships with most variables. For example, stand
volume and LiDAR-derived height percentiles had an r2

between 0.76 and 0.94, depending on the forest type. Height
percentiles can also be derived by subdividing a target area
into a grid with fixed cell areas and then selecting a maximum
canopy height from each cell (Aldred and Bonnor 1985,
Ritchie 1995, Nilsson 1996, Næsset 1997), which in essence
also selects a quantile of available laser canopy heights (Mag-
nussen and Boudewyn 1998). Magnussen and Boudewyn
(1998) showed that these canopy height percentiles can be
used to estimate canopy leaf area if the quantile of laser
heights is matched in probability to the fraction of leaf area
above a desired height.

Attribute estimation through curve fitting
Rather than extracting height percentiles from the distribu-
tion of LiDAR hits, a number of researchers have developed
methods to estimate the projected vertical foliage density pro-
file. Owing to the inability of the vertical view to resolve
foliage angle distribution, clumping and non-foliage elements
(Chen and Leblanc 1997), the profiles derived are not the
same as the true foliage density profiles, hence the derived
profiles are referred to here as apparent foliage profiles. The
difference between the true and apparent profiles depends on
the canopy structure and type as discussed by Ni-Meister et
al. (2001). Derivation of the apparent foliage profile from
LiDAR observations has been well described (Lovell et al.

2003, Riano et al. 2003), and once derived, several different
distributions can be fitted to the foliage density profile in
order to stabilize the distribution and to provide a convenient
summary of the vertical form. The most commonly applied
distribution is a Weibull function, due to its flexibility in char-
acterizing foliage distributions of various species (Vose 1988,
Kershaw and Maguire 1995, Xu and Harrington 1998, Lovell
et al. 2003). As discussed by Bailey and Dell (1973) and Xu
and Harrington (1998), the a parameter provides a vertical
scaling and positioning factor for movement of the distribu-
tion and the ß provides the capacity to increase or decrease
the breadth of the distribution (Coops et al. 2007). This dis-
tribution, as defined by the Weibull function parameters 
a and ß, has also been used (Magnussen et al.1999) to exam-
ine the distribution of canopy heights from airborne LiDAR
systems by comparing the probability of LiDAR height quan-
tiles above a desired height with the distribution of leaf area.
The height parameter may either be fitted or set to the height
of the highest return.

Canopy volume
An alternative method to model canopy structure using LiDAR
data is the examination of filled and open volumes within a for-
est canopy. Lefsky et al. (1999a) developed a technique to
examine and model 3-dimensional canopy structure (canopy
volume profiles). The method superimposed a 3-dimensional
matrix over the forest canopy composed of 10-m by 10-m wide
and 1-m tall cells (referred to as voxels), which are then classi-
fied as either “filled” or “empty” depending on whether a
LiDAR return originated from that space in the canopy. Filled
cells are labelled either “euphotic” zone, if the cell is located
within the uppermost 65% of all filled volumes, or
“oligophotic” zone if it is located below this location in the ver-
tical profile. This approach effectively provides a broad classifi-
cation of the canopy into active and less active photosynthetic
zones. Although the method of Lefsky et al. (1999a) was devel-
oped with full waveform LiDAR, Coops et al. (2007) demon-
strated that similar canopy volume information can be derived
from discrete return small-footprint LiDAR (Fig. 4). By bin-
ning multiple data points into fixed cell areas (e.g., 20 m by 
20 m), Coops et al. (2007) found that the estimated canopy vol-
umes were related to changes in Douglas-fir (Pseudotsuga men-
ziesii (Mirb.) Franco var. menziesii) stand structure—with sig-
nificant correlations to one or more stand attributes including
crown volume, stem density, and basal area.

Cover estimates
The amount of vegetation cover may be estimated by compar-
ing the total number of incoming laser pulses to those that
pass unimpeded through any given vertical layer of the
canopy (Fig. 5C-5E). As a result, LiDAR data has the capacity
to predict vegetated cover for any given layer of the forest
canopy, including overstorey, midstorey, understorey, and in
some cases, ground cover. For example, Riano et al. (2004)
utilized LiDAR data to produce accurate and spatially explicit
estimates of a number of forest cover estimates for forest fire
fuel estimation such as information on canopy cover, and
canopy base height. Morsdorf et al. (2006) used small-foot-
print discrete return LiDAR to estimate Leaf Area Index
(LAI) and fractional cover (fraction of ground covered by
vegetation over uncovered ground), with the latter computed
as the fraction of laser vegetation returns over the total num-
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ber of laser returns per unit area, and a proxy for LAI was like-
wise generated as the fraction of first and last return types in
the canopy. Similarly, Solberg et al. (2006) estimated gap frac-
tion as the ratio of the total number of returns to the total
number of below-canopy returns (with canopy returns being
those returns above 1 m). It must be noted that estimation of
gap fraction, fractional cover, and LAI will vary with sensor
parameters (e.g., sampling density), and data processing (e.g.,
data thinning). Furthermore, in order to get consistent esti-
mates of canopy cover certain assumptions are made: an
appropriate height threshold is selected to identify canopy
hits (e.g., returns >1 m), and that every laser pulse produces a
return. Lee and Lucas (2007) used a small-footprint discrete
return LiDAR system with a 1-m data posting to develop the
Height-Scaled Crown Openness Index (HSCOI). This index
quantitatively measures the relative penetration of LiDAR
pulses into the canopy, thereby allowing stems to be located
regardless of the stems’ position in the forest vertical profile.
The HSCOI in intended to be complementary to a CHM, and
expands the information available from discrete return sys-
tems (in the sub-canopy).

Variance-based approaches
In Fig. 5F, the coefficient of variation (CV) of height is mapped,
relating the variation in height values found within a 5-m by
5-m moving window. The CV is used to depict attribute vari-
ability visually, as well as to provide a model input indicative of
local heterogeneity (Drake et al. 2002, Næsset and Økland 2002,
Frazer et al. 2005). Donoghue et al. (2007) used CV of LiDAR
height to discriminate between different species groups.

Information Needs for Sustainable Forest Management 
The past decade has seen an increased focus on sustainable for-
est management, defined as implementing practices that main-
tain and enhance the long-term health of forest ecosystems for
the benefit of all living things while providing environmental,
economic, social and cultural opportunities for present and
future generations (Natural Resources Canada 2007). Sustain-
able forest management has become a global phenomenon
(Siry et al. 2005) characterized by a growing emphasis on bal-
ancing multiple objectives for forest resources. This has
resulted in an increased need for spatially explicit, accurate, and
cost-effective forest information. For instance, the British
Columbia Forest and Range Practices Act (FRPA), identifies 11
different forest resource values including timber, biodiversity,
recreation, water, forage, fish, riparian, and visual quality. Each
of these resource values is assessed and monitored using a suite
of criteria and indicators, which may be intensive or extensive,
and which are typically collected using a combination of field-
based surveys and air photo interpretation.

LiDAR remote sensing offers the ability to accurately
assess many of these indicators at the landscape level. Table 2
provides examples of FRPA resource values and a selection of
indicators used for monitoring. Based on our understanding
of the literature, the technology, and of the information needs
associated with these indicators, we have provided a subjec-
tive rating indicating the capacity of LiDAR for estimating
each of these indicators. For example, natural hazards are one
of the indicators associated with recreation resources. Most
natural hazards are linked to terrain morphology and LiDAR
data may be used to generate an accurate, high spatial resolu-
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Fig. 4. Canopy volume profile estimates for a (A) young and (B) mature Douglas-fir stand. 
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Fig. 5. A QuickBird image displaying a portion of Vancouver Island, British Columbia, Canada (A), and corresponding LiDAR-derived maxi-
mum height (B), understorey (C), midstorey (D), and overstorey (E) cover, and height coefficient of variation (F).
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Table 2. British Columbia Forest and Range Practices Act resource values, selected indicators, and how LiDAR data may be used
to estimate them. Note that several of the resource values are currently under development by the provincial government.

Capacity 
of LiDAR 
to estimate 

FRPA Resource Values Indicators indicator Notes

Timber See Table 3.

Stand-level biodiversity See Tables 3 and 4.

Forage and associated Plant community descriptions Limited Limited ability to estimate vegetation species and
plant communities (e.g., vegetation species, browsing browsing intensity.

intensity)

Stream riparian functions Moderate DEM evaluation provides information on channel 
morphology at the reach scale. Use standard LiDAR 
vegetation metrics to monitor vegetation structure. 
Limited ability to estimate flow regimes, biotic 
communities, and water quality.

Erosion/deposition Moderate DEM evaluation, but scale of enquiry limited by 
vegetation cover and survey parameterization. Rills and 
gullies will not be detected.

Visual quality Visual quality objective High Determine tree heights; may be useful for estimating 
volume removed. When combined with optical data, DSM 
may provide height information for 3D visualizations.

Recreation resources Forest health, invasive plants Moderate Identify changes in canopy structure (e.g. defoliation) 
using vegetation returns. Not useful for invasive plant 
identification.

Natural hazards High DEM evaluation for landslide chutes, slope mapping, 
tsunami hazard zones, and so on.

Resource features Size of retention areas High Map size and height using vegetation returns. Possible to
surrounding karst resources estimate amounts of windthrow and harvesting within 

retention areas.

Soil disturbances, amounts None
of logging slash

Water Condition of plant community Moderate Use standard LiDAR vegetation metrics to monitor 
riparian vegetation structure.

Livestock management practices None

Cultural heritage Monitoring culturally sensitive Moderate Use standard LiDAR vegetation metrics to monitor forest
natural resources, resource structure.
gathering areas

Identify culturally modified trees None

Fish/riparian Point indicators (e.g. % moss, None
# of insect types)

Channel morphology Moderate DEM evaluation, map platform and cross-sectional 
morphology. Not useful for analysing sediments, bank 
characteristics and so on.
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tion DEM, which can then subsequently be used to locate and
characterize these natural hazards. For other indicators such
as the identification of vegetation species, LiDAR can only
provide limited information—particularly when considered
in an operational context or in contrast to lower-cost aerial
photography.

As expected, many key indicators of forest sustainability
listed in Table 2 concern timber attributes, such as diameter,
height, and volume (Table 3). Traditionally, these types of
inventory attributes are collected as part of field-based inven-
tories; however, many studies have demonstrated approaches
for accurate determination using LiDAR remote sensing tech-
nology. As discussed previously, analyses may be based on
individual trees or plots, depending on the hit density of the
LiDAR survey. At a very dense point spacing, studies have
demonstrated that different tree architectures facilitate
species recognition for individual trees (Holmgren and Pers-
son 2004, Brandtberg 2007), as well as delineation of crown
boundaries (Popescu et al. 2003, Lee and Lucas, 2007). At the
plot-level, mean stand height and maximum height are accu-
rately estimated (Næsset and Økland 2002), while other
attributes such as diameter, volume, and stocking are 

estimated using allometric relationships based on height 
(e.g., Næsset 2002).

The assessment of forest stand indicators of biodiversity
includes the examination of many of the same variables
obtained from forest inventories; however, the data is often
augmented by additional information on species and structure
(Tables 3 and 4). The horizontal and vertical organization of
forest canopies can provide managers with information relat-
ing to the development of plant communities, canopy func-
tion, and habitat conditions for wildlife (Lefsky et al. 2002,
Nelson et al. 2005). Information on the vertical and horizontal
arrangement of elements within the forest canopy is readily
obtainable from LiDAR data and, as indicated in Tables 3 and
4, studies have shown LiDAR data can provide information
pertaining to crown closure (Popescu et al. 2003), canopy vol-
ume (Lefsky et al. 1999a), estimation of windthrow
(Reutebuch et al. 2005), coarse woody debris (Lefsky et al.
1999b), tree life stage (Bater et al. 2007), and diameter distri-
bution (Suárez et al. 2005). As LiDAR responds to structural
rather than functional elements in the canopy, it is not possi-
ble to discern some attributes from LiDAR data directly;
examples include attributes related to plant function, ecophys-
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Table 3. Examples of timber inventory and stand-level biodiversity indicators from the British Columbia Forest and Range Prac-
tices Act (FRPA). Relevant references from the literature are provided. Note that the FRPA timber resource value was in develop-
ment at the time of this writing; the indicators listed below are typical variables measured in the field. 

Indicator Sampling Individual 
density tree, plot- or

(pulses/m2) polygon-based Species Reference

Diameter 1.2 Plot Norway spruce, Scots pine Næsset 2002

0.2 Plot Douglas-fir Magnussen and 
Boudewyn 1998, 

Magnussen et al. 1999

Height 0.6–2.3 Individual tree, plot Norway spruce, Scots pine Næsset and Økland 2002

6 Individual tree Douglas-fir, ponderosa pine Andersen et al. 2006

Volume 4-5 Individual tree Norway spruce, Scots pine, silver birch, downy birch Maltamo et al. 2004

Pathological 
indicators Not recommended using LiDAR(e.g. scars, 
broken tops)

Growth 10 Individual tree Scots pine Yu et al. 2006

Species 4.7 Individual tree Norway spruce, Scots pine Holmgren and Persson 2004

Height to base 0.6–2.3 Individual tree, plot Norway spruce, Scots pine Næsset and Økland 2002
of crown

Crown diameter 1.4 Individual tree White oak, chestnut oak, northern red oak, Popescu et al. 2003
southern red oak, yellow poplar, red maple,/
Virginia pine, loblolly pine, shortleaf pine, 
pignut hickory, scarlet oak, black oak, blackgum, 
American beech

Number of trees 1.2 Plot Norway spruce, Scots pine Næsset 2002
per hectare 4–5 Individual tree Norway spruce, Scots Pine, silver birch Maltamo et al. 2004
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iology, and/or invasive species identification. The acquisition
of these attributes will continue to require field-based surveys,
or some other remotely sensed data source. Furthermore, as
the uses of information on stand indicators of biodiversity are
highly varied, so too are the methods used and the attributes
extracted from LiDAR data. As a result, there remains little
convergence on standard metrics of stand structural diver-
sity—either measured in the field or extracted from LiDAR
data (Frazer et al. 2005).

LiDAR has the potential to provide additional data to
water quality and riparian management activities due to its
capacity to provide fine-scale information on surface features
under the forest canopy, such as gullies and channel morphol-
ogy, as well as information on canopy height and vegetation
cover density (Table 2). However, LiDAR data provide limited
utility for assessing indicators such as soil compaction or the
impacts of livestock grazing. Management of forest visual
quality has emerged as an important issue with the increased
recreational use of forests as well as increased public expecta-
tions surrounding forest practices and conservation (British
Columbia Ministry of Forests and Range 2006). Visual qual-
ity objectives are management criteria reflecting both the
physical characteristics and a supposition of the public’s
desired level of visual quality for a landscape. LiDAR is an
important data source for realistic visual simulations and the
visual impact assessment process (Sheppard 2004, Fujisaki
2005, Evans et al. 2006).

Operational Considerations
When planning a LiDAR-based survey, parameters may be
optimized for forest management information needs. The
quality of the LiDAR data product depends on the properties
of the LiDAR hardware and the parameters chosen for the
survey. In addition, the costs of data acquisition often prohibit
spatially exhaustive measurements, especially over large areas,
thereby requiring trade-offs to be made between the area cov-
ered by the survey and total survey cost. The physical proper-

ties of LiDAR sensors vary with the type of application a par-
ticular instrument was developed for and can generally be
characterized by a number of attributes, including the laser
wavelength (µm), pulse duration (ns), pulse energy (µJ),
pulse repetition rate (kHz), beamwidth (mrad), scan angle
(deg), scan rate (Hz), flying height (m), and size (m) of laser
footprint on ground (Table 1) (Baltsavias 1999). Laser wave-
length, pulse duration, and pulse energy have implications for
the sensor’s ability to capture the vertical canopy structure
(vertical resolution), as low levels of emitted pulse energy may
result in insufficient (i.e., non-detectable) rates of return
energy, especially when being reflected from surfaces with
low reflectivity. The increased capacity of a sensor to distin-
guish between different levels of returned intensity when
using high energy levels can potentially be used to identify
structural and compositional features of the forest canopy
(Donoghue et al. 2007). Pulse duration and pulse energy are
typically in the range of 5 ns to 10 ns and up to 20 µJ, respec-
tively (Utkin et al. 2003), with the most LiDAR instruments
operating in the near infrared part of the electromagnetic
spectrum to optimize for reflectance of vegetation elements
and for eye safety considerations.

Laser footprint size and pulse frequency will determine
the horizontal and vertical resolution that is observable from
LiDAR. For instance, a larger footprint may enhance the
probability of obtaining multiple returns from different
height levels within the canopy, thus enhancing the vertical
resolution; however, the energy received from a returning
pulse will decrease with an increasing footprint size, as the
energy will be distributed over a larger area. Likewise, higher
pulse rates can increase the point density and therefore
ground coverage, while the level of energy available per emit-
ted laser pulse decreases (Chasmer et al. 2006, Wagner et al.
2006). Laser pulses emitted from small-footprint LiDAR
instruments typically span a diameter of up to a few meters,
with the pulse rate ranging between 20 kHz and 167 kHz (e.g.,
Optech Gemini).
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Table 4. Additional indicators of stand-level forest biodiversity from the British Columbia Forest and Range Practices Act, with ref-
erences to previous studies using LiDAR technology.

Sampling 
density 

Indicator (pulses/m2) Individual tree, plot- or polygon-based Species Reference

Species See Table 3

Diameter See Table 3

Height See Table 3

Crown closure, 0.7 Plot Douglas-fir, western Coops et al. 2007
canopy volume hemlock, western red

cedar, red alder

Ecological anchors 
(e.g., bear den, cavity Not recommended using LiDAR remote sensing
nest, wildlife trails)

Invasive plants Not recommended using LiDAR remote sensing

Coarse woody debris 1.4 Plot Lodgepole pine, Seielstad and 
unspecified spruce/fir Queen 2003
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Scan angle and flying height of the instrument need to be
selected with regard to both data acquisition costs and the
measurement detail desired. While greater flight altitudes
promise more ground coverage per overpass due to an
increased potential swath-width, the level of detail observable
by the instrument will decrease, as flying height influences
point spacing, footprint size, and pulse energy (Goodwin et
al. 2006, Hopkinson 2007). Likewise, an increase in scan-
angle can widen the swath observed per overpass; however,
the quality of data decreases the further a measurement is
taken off-nadir, which also decreases the rate at which laser
pulses are directed across the flight line (scan rate). Typical
flying heights are generally up to 500 m for fixed-wing air-
craft. Airborne LiDAR systems typically feature moderate
levels of pulse energy at high sampling rates, whereas higher-
altitude instruments require higher energy levels, which often
results in reduced point densities (Wagner et al. 2006). Table
5 provides a typical LiDAR system configuration required to
obtain approximately 0.5 to 0.8 LiDAR hits per m2, while
Table 6 provides a listing of system parameters for 3 common
discrete return small-footprint LiDAR systems. When con-
sidering the systems listed in Table 6, it may be useful to recall
that when variables such as flying height and speed are held
constant, sensors with a higher pulse rate will generally result
in a higher posting (more returns per m2).

Considerable and recent progress has been demonstrated
in the development of LiDAR instrumentation owing to tech-
nical improvements in optical systems and precise real-time
positioning using dGPS/INS. Current developments include
the enhancement of pulse rate and number of LiDAR returns
observable per pulse. Modern systems allow sampling fre-
quencies of up to 167 kHz (e.g., ALTM 3100 EA, Optech Kiln,
MS, USA), which corresponds to >20 LiDAR returns per m2

observed, depending on speed and altitude of the sampling
aircraft. However, despite the increase in pulse rate, trade-offs
will still need to be made between pulse rate and flying height,
as the speed of light limits the rate at which the LiDAR pulse

can return to the sensor. At a higher flying altitude, laser
pulses will take longer to return to the sensor, and emitted
pulses may start to overlap with returning pulses. Small-foot-
print full waveform systems, such as the recently developed
LMS-Q560 (Riegl Laser Measurement Systems GmbH, Horn,
Austria), are able to record all returning echoes from an emit-
ted small-footprint pulse. The latter hold promise for facilitat-
ing highly detailed measurements of canopy structure in both
the overstorey and understorey.

While difficult to generalize, LiDAR data cost approxi-
mately $5.00 CDN per hectare4 for a configuration resulting
in approximately 1 hit per metre (including costs for both
data acquisition and basic processing). Costs therefore may
present a key obstacle in using LiDAR as tool for large-area
forest inventories (Wulder and Seemann 2003). LiDAR acqui-
sition costs are comparable to those of airborne remote sens-
ing applications and include costs for instrument purchase
and maintenance, aircraft ferry time to the study site, acquisi-
tion time, and other variable costs determined by the speci-
fied survey parameters. Table 7 provides a summary of data
acquisition considerations and the associated implications for
survey costs. Table 8 lists expected costs for data postings of
30, 90, and 150 cm. Per-hectare costs will decrease as the spa-
tial extent of the study area increases. However, the acquisi-
tion of full wall-to-wall LiDAR data coverage over large areas
is rare (Nelson et al. 2003, 2005; Næsset et al. 2004). Possible
ways increase the cost-effectiveness of LiDAR acquisition
include cost-sharing consortia with multiple stakeholders
(Reutebuch et al. 2005), and strategic combinations of LiDAR
samples (e.g., transects) with wall-to-wall image coverage,
such as using aerial photography or moderate to high spatial
resolution satellite imagery (e.g., Landsat or QuickBird)
(Hudak et al. 2002, Wulder and Seemann 2003, Nelson et al.
2003, Wulder et al. 2007b), and thereby extrapolating struc-
tural information across the larger area based on empirical
relationships between the spectral properties of the canopy
and the LiDAR data.

In some respects, operational adoption of LiDAR technol-
ogy is constrained by the inventory methods that are man-
dated by provincial government agencies through policy
agreements (Lim et al. 2003). As a result, the use of any new
techniques must be carefully scrutinized by governing agen-
cies to ensure results produced are compliant within the poli-
cies established under tenure arrangements granted to the
forest industry. Cost-sharing data acquisition and joint indus-
try–government trials may enhance operational adoption of
LiDAR for forest inventory.

Discussion and Future Prospects
Over the past decade, LiDAR has emerged as a data source for
meeting forest measurement needs. The ability to make direct
measurements of vertical attributes, rather than relying on
empirical relationships, has been welcomed. The nature of
LiDAR data, as opposed to typical remotely sensed image
data sources, has resulted in some confusion about the infor-
mation that can be extracted from LiDAR data. An end user’s
understanding of optical remotely sensed data may be applied
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Table 5. Typical LiDAR system parameters and flight specifica-
tions

Example parameters  
required to obtain 

Parameter 0.5 to 0.8 hits per m2

Sensor Mark IIa

Laser scan frequency 25000 Hz
Laser impulse frequency 40000 Hz
Laser power <4 Watt
Maximum scan angle <20°
Type of scanning mirror Oscillating
Laser beam divergence <0.5 milliradians
Measurement density 0.5 to 0.8 hits per sq meter 
Datum NAD83
Projection UTM Zone 10
Platform Bell 206 Jet Ranger helicopter
Flight altitude above ground 900 m
Flight speed 25–30ms-1

aLiDAR system developed and operated by Terra Remote Sensing, Sidney, BC,
Canada.

4http://www.csc.noaa.gov/crs/rs_apps/sensors/LiDAR.htm; with
equivalent cost of approx $6.00 / ha reported for flight, LiDAR col-
lection, post-processing, and delivery
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to the understanding of LiDAR data and products. For
instance, in forestry, the linkage between spatial resolution
(pixel size) and the concomitant objects that can be character-
ized (trees, stands) is well understood, with high spatial reso-
lution data enabling single tree identification and analyses,
and lower spatial resolution data sources enabling coarser
stand-level (or broader) analyses (Wulder et al. 2004). The
point or hit density (posting) of a given LiDAR survey can be
considered analogous to the spatial resolution/information
content of optical remotely sensed data. At very high postings,
characterizations of individual tree morphology may be made.

820 NOVEMBRE/DÉCEMBRE 2008, VOL. 84, No 6 — THE FORESTRY CHRONICLE

Table 6. Comparative listing of system parameters for 3 small-footprint discrete return LiDAR systems

Sensor
ALTM 3100EA Falcon III ALS50-II

Parameter (Optech) (TopoSys) (Leica Geosystems)

Type Discrete return Discrete return Discrete return
(waveform recording (waveform recording (waveform recording

optional) optional) optional)
Maximum pulse repetition rate (kHz) 100 125 150
Laser wavelength (µm) 1.064 1.560 1.064
Beam divergence (mrad) 0.3 or 0.8 0.7 0.22
Intensity capture (bits) 12 12 8
Number of samples per emitted pulse 4 9 4
Minimum separation between returns (m) 2.0 2.0 2.8
Scan rate (Hz) 70 165 to 415 90
Scan angle (°) ± 25 28° fixed ± 37.5
Flying height (m) 80 to 3500 30 to 2500 200 to 6000
Scanning mechanism Oscillating mirror (sawtooth) Fibre scanner Oscillating mirror (sinusoid)

Table 7. LiDAR acquisition operational considerations and cost implications

Data acquisition 
considerations Fixed and variable elements 

Sensor availability •  Geographic location
• Time of year
• Scheduling (length of advance notice to data provider)
• Scheduling flexibility may allow for negotiation of a lower price
• Survey size (length of time sensor required)

Fixed costs for data provider •  Capital equipment (depreciation)
• Survey costs (≈10 to 20% of costs)
• Aircraft
• Aircraft ferry time to acquisition area included
• Fuel
• Field crew
• Overhead (i.e., insurance, warranty on sensor, profit)

Cost control for client •  Optimize use of capital asset (partners, purchase in volume)
• Match data requirements to data specifications (do not purchase unnecessarily high postings)
• Provide own ground support
• Do own data processing

Product definition •  What is required, posting, survey area, data characteristics, ancillary data (intensity, GPS observable),
required vertical and horizontal accuracies

Price model •  Typically based upon a fixed base price, ferry time to site, acquisition time, and variable costs based upon
requested survey parameters. 

Table 8. Expected costs for LiDAR data for a range of post-
ings from 30 to 150 centimetres. The posting is the interval
of the spacing of LiDAR hits that is expected for a particular
configuration of aircraft location and sensor specification.

Posting (cm) Price / ha (CDN$) Price /  km2 (CDN$)

150 3 300
90 5 500
30 10 1000
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As postings decrease, individual trees may be identified; how-
ever, lower postings result in an inability to characterize indi-
vidual trees and result in stand-level evaluations (Leckie et al.
2003, St-Onge et al. 2003).

The number of forest inventory attributes that may be
directly measured with LiDAR is limited. However, when
considered within the context of all the measured and derived
attributes required to complete a forest inventory, the infor-
mation on height and structure provided by LiDAR can be a
valuable tool in the inventory process. Combining LiDAR
data with remotely sensed optical data (e.g., aerial photogra-
phy or high spatial resolution remotely sensed imagery)
broadens the range of forest attributes that may be character-
ized and ideally aerial photography should always be co-col-
lected with LiDAR data.

Capturing elevation data for road-building and harvest
block layout may be of greater interest for operational forestry
than developing refined forest inventory attributes to meet
long-term information needs. The costs and sophisticated,
often custom, processing needs associated with LiDAR data
are key limitations that need to be addressed in order to
enable further adoption of LiDAR into operational forest
management and monitoring programs. Rather than sup-
planting existing approaches, LiDAR data can be integrated
into current forest inventory processes. For example, LiDAR
data can provide samples of height data to calibrate existing
ocular or modeled height estimates, and LiDAR data can be
used to support forest inventory update activities, riparian
management, and site quality assessment.

Using appropriately designed surveys, repeated LiDAR
observations enable measurement of tree height growth over
time (Yu et al. 2006, 2008; Næsset and Nelson 2007). A
marked change in tree height, however, can only be measured
if the height increase is greater than any biases in the LiDAR
measurement. LiDAR measurements may be biased as a
result of several factors, including instrument specifications,
flying height, species architecture, and the measurement
method used. These sources of bias manifest as measurement
errors (reported accuracy) that can range from a few centime-
tres up to a few meters (e.g., Aldred and Bonnor 1985, Chen
and Ni 1993, Ritchie 1995, Latypov 2002). The objectives of a
survey must again be considered when communicating accu-
racy. The accommodations that may be required to undertake
an operational larger area survey will typically result in lower
accuracies in tree, or canopy, height estimation than focused
plot-based studies.

To aid in consideration of the implications of LiDAR
attribute estimation error when monitoring growth with an
operationally focused survey (at approximately a 1 m post-
ing), we present Fig. 6 as an example of bias in LiDAR meas-
urement against expected increase in height for a range of site
index classes found within a 2-km by 2-km study area domi-
nated by Douglas-fir near Campbell River, Vancouver Island,
British Columbia, Canada. Expected annual growth incre-
ment (in metres), by age (Fig. 6(A)) and estimated height by
age (Fig. 6(B)) are used to model expected annual growth
increment by age and site index (Fig. 6(C)). Fig. 6(C) illus-
trates the operational constraints to using LiDAR to detect
changes in stand heights over time in the context of an inven-
tory update. Fig. 6(C) assumes a LiDAR measurement bias of
1 m; the horizontal axis shows the site index and the vertical
axis shows the stand age in 5-year intervals. The values within

Fig. 6(C) represent the expected growth increments within
the 5-year period for the different site index values. The dif-
ferent shading symbolizes the time period after which new
LiDAR-based measures for inventory update can reasonably
be made (i.e., when growth increment exceeds assumed
measurement bias). The time for the height growth to exceed
the bias of the LiDAR system is site-, species-, and age-
dependent and can vary from 2 years to a few decades. As
height growth is greatest for young trees under good environ-
mental conditions, the most appropriate use for LiDAR-based
inventory updates may be found within young forests with a
high site index. For such stands, new measurements can be
made almost every 2nd year. Older stands with a lower site
index will take considerably more time for their height incre-
ment to exceed the bias of the LiDAR system. While the
appropriateness of 1 m as an expectation of measurement
error may be debated, users should consider that there is
likely to be some error and that this error should be con-
trasted with expected growth if LiDAR is to be used for mon-
itoring growth or as an inventory update data source. Further,
from an operational monitoring perspective, it may be prefer-
able to model growth (with established growth and yield rela-
tionships) from an initial LiDAR survey, followed by the sub-
sequent use of optical imagery to monitor for change, rather
than specifying multiple LiDAR surveys. The combination of
optical imagery (for depletions) and modeling (for growth)
provides a cost-effective option with fewer data acquisition
and processing requirements than a repeat LiDAR survey.

LiDAR-based forest attributes, in particular height related
parameters, have been shown to be more precise and cost-
effective than field measured data (Wulder and Seemann
2003, Lefsky et al. 2005, Nelson et al. 2003, Weller et al. 2003),
with errors related to tree height of less than 1 m (Næsset et
al. 2005). In addition, a large number of studies  have demon-
strated that there is good agreement between field-measured
canopy attributes, such as crown dimensions (Lovell et al.
2003, Coops et al. 2007), canopy volume (Lefsky et al. 2005,
Coops et al. 2007), diameter at breast height (DBH), basal
area (Lefsky et al. 1999a, Chen et al. 2007) and growth rates
(Yu et al. 2008) making LiDAR useful for the assessment of
forest inventory, forest sustainability and ecosystem quality
(Lefsky et al. 2002, Bater et al. 2007).

Future efforts by the LiDAR instrument research and
development community may include the design of smaller,
more user-friendly instruments and, although difficult,
another useful design goal would be reduced power con-
sumption. Also helpful would be the development of software
tools that allow the user to design surveys and configure the
LiDAR instrument to satisfy specific information require-
ments. Development of laser instruments that have the power
and frequency to fly at higher altitudes within the constraints
discussed earlier, while still collecting data with high ground
hit density (posting), are desired for forest attribute character-
ization. An increase in instrument power may be enhanced
with concurrent improvements to detectors, while an increase
in acquisition altitude may allow for the matching of the
LiDAR swath with a camera’s or multispectral sensor’s field-
of-view. In addition, increased acquisition altitudes will
require research to better characterize and understand off-
nadir LiDAR hits. The opportunity to generate waveform-like
data from discrete return instruments would also be 
welcomed by the forestry community. The small-footprint
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discrete return systems listed in Table 6 have the capacity to
collect data in full waveform mode.

The collection of full digital data sets, including LiDAR
and image data, would allow for estimation of forest attributes
at a scale useful for management purposes. Forest attributes,
such as height, are currently well characterized utilizing
LiDAR data. Any sensor or software developments that result
in decreased costs for LiDAR data acquisition and processing
will aid in the integration of LiDAR into forest management
and monitoring. One impediment to the integration of
LiDAR into operational forest management is the lack of
qualified personnel. The collection and processing of LiDAR
data is not a skill that is currently widely taught in Canadian
universities. The value-added geomatics community has the
capacity to collect and process LiDAR data and several com-
panies in Canada provide this service. The actual estimation
of forest attributes continues to have a strong research com-
ponent, whereby the needs of the data user and elements par-
ticular to the data collected and the forest and terrain present,

require custom applications. The development of turn-key
applications for LiDAR data is aided by current research
efforts in data processing, multi-source data integration, and
attribute estimation over a range of forest and terrain config-
urations.

Summary
Forest managers, especially those with provincial stewardship
mandates, should examine current sustainable forest manage-
ment information needs to identify shortcomings in existing
data acquisition protocols. These shortcomings can in turn
serve as a guide for identifying possible opportunities for the
use of LiDAR data. Again, the differences in information
needs between strategic large-area surveys and operational
surveys must be noted. The information required for stand-
level strategic planning and decision-making is more general-
ized relative to the capacity of LiDAR surveys to generate
detailed tree-level characterizations. Canada has large forest
areas under extensive forest management practices. In this
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Fig. 6. Expected annual growth increment (m) (A) and estimated height (m) (B) for a given age of Douglas-fir, and the expected annual
growth increment for a given age (in 5-year increments) and site index (C). Assuming a bias in height measurement using LiDAR of 1
m, the recommended remeasurement period is shaded accordingly. For example, a 30-year-old Douglas-fir with a site index of 41 has
an expected annual growth increment of approximately 3.57 m. With an assumed LiDAR bias of 1 m, it is expected that changes in
height could be accurately captured every 2 years.

T
he

 F
or

es
tr

y 
C

hr
on

ic
le

 D
ow

nl
oa

de
d 

fr
om

 p
ub

s.
ci

f-
if

c.
or

g 
by

 2
16

.1
83

.1
54

.2
52

 o
n 

01
/1

9/
12

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.

http://nrc.literatumonline.com.nrc.literatumonline.com/action/showImage?doi=10.5558/tfc84807-6&iName=master.img-005.jpg&w=433&h=359


context, the use of LiDAR as a primary data source is pre-
cluded by cost and logistical issues. Furthermore, the estima-
tion of required attributes is not sufficiently refined to provide
forest managers with a clear business case for supplanting
current strategic forest inventory practices at this time. In an
operational context, users must make the distinction between
measurement accuracies achieved and reported through con-
trolled research experiments and realistic measurement accu-
racies that may be expected when methods are applied over
large (and highly variable) forest environments. In addition,
data users should be mindful of the relationships between hit
densities (postings) and the attributes that can be conferred.

The greatest opportunities for LiDAR at the present time
appear to be for engineering purposes. LiDAR elevation data
is accurate and processing algorithms are increasingly robust
and standardized. Elevation data can provide forest managers
with immediate cost savings for activities such as road-build-
ing and harvest planning. For less topographically variable
areas of Canada, lower postings (e.g., 1 return every 5 m) can
still produce an elevation model useful for addressing a range
of information needs. At a strategic level, LiDAR data, espe-
cially with high postings, may not provide the same value, and
users may find they are paying for more information than is
required. Efforts should focus on supplementing current data
acquisition approaches with LiDAR information. The incre-
mental integration of LiDAR-generated attributes into exist-
ing forest inventory data will, over the short term, promote
the increased use of LiDAR for a range of forest applications,
ultimately enabling time and cost savings for future imple-
mentations. The costs associated with LiDAR data will likely
continue to be relatively high when compared to other data
sources, as instrument costs need to be amortized, and regu-
lar survey costs, such as fuel, mobilization and aircraft ferry-
ing charges, need to be borne. The judicious and appropriate
use of LiDAR data can enhance sustainable forest manage-
ment practices by building upon existing knowledge and
expertise in the forest management community.
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